วันศุกร์ที่ 28 กรกฎาคม พ.ศ. 2560

การไม่เท่ากัน

การเท่ากันในระบบจำนวนจริงมีสมบัติพื้นฐาน ดังนี้
1. สมบัติการสะท้อน
ถ้า a เป็นจำนวนจริงใด ๆ แล้ว a = a
ผลการค้นหารูปภาพสำหรับ การไม่เท่ากัน
เช่น 3 = 3
2. สมบัติการสมมาตร
เมื่อ a และ b เป็นจำนวนจริงใด ๆ ถ้า a = b แล้ว b = a
เช่น ถ้า 3 + 4 = 7 แล้ว 7 = 3 + 4
3. สมบัติการถ่ายทอด
เมื่อ a , b , c เป็นจำนวนจริงใด ๆ ถ้า a = b และ b = c แล้ว a = c
เช่น ถ้า 15 = 5 x 3 และ 5 x 3 = 10 + 5 แล้ว 15 = 10 + 5 อ่านต่อ

สมบติของจำนวนจริง

สมบัติการเท่ากันของจำนวนจริง
1. สมบัติการสะท้อน a = a
2. สมบัติการสมมาตร ถ้า a = b แล้ว b = a
3. สมบัติการถ่ายทอด ถ้า a = b และ b = c แล้ว a = c
4. สมบัติการบวกด้วยจำนวนที่เท่ากัน ถ้า a = b แล้ว a + c = b + c

ผลการค้นหารูปภาพสำหรับ สมบัติของจำนวนจริง5. สมบัติการคูณด้วยจำนวนที่เท่ากัน ถ้า a = b แล้ว ac = bc  อ่านต่อ

จำนวนตรรกยะ

   สมบัติของจำนวนตรรกยะ



จำนวนตรรกยะ คือ จำนวนที่สามารถเขียนในรูปเศษส่วน a/b เมื่อ และ เป็นจำนวนเต็มโดยที่ ไม่เท่ากับ 0 จำนวนตรรกยะ จำแนกได้เป็น 3 ประเภทใหญ่ ๆ อ่านต่อ

จำนวนจริง

จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I
                   I = { …,-3,-2,-1,0,1,2,3…}
ผลการค้นหารูปภาพสำหรับ จํานวนจริงเซตของจำนวนตรรกยะ เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน      โดยที่ a,เป็นจำนวนเต็ม  และ b = 0 อ่านต่อ

การให้เหตุผลแบบอุปนัย

ผลการค้นหารูปภาพสำหรับ การให้เหตุผลแบบอุปนัย  การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เกิดจากการที่มีสมมติฐานกรณีเฉพาะ หรือเหตุย่อยหลายๆ เหตุ เหตุย่อยแต่ละเหตุเป็นอิสระจากกัน มีความสำคัญเท่าๆ กัน และเหตุทั้งหลายเหล่านี้ไม่มีเหตุใดเหตุหนึ่งแสดงให้เห็นถึงความเป็นสมมติฐานกรณีทั่วไป หรือกล่าวได้ว่า การให้เหตุผลแบบอุปนัยคือการนำเหตุย่อยๆ แต่ละเหตุมารวมกัน เพื่อนำไปสู่ผลสรุปเป็นกรณีทั่วไป เช่นตัวอย่างการให้เหตุผลแบบอุปนัย อ่านต่อ

การให้เหตุผลแบบนิรนัย

  การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด
               ตัวอย่างที่ 1      เหตุ   1.สัตว์เลี้ยงทุกตัวเป็นสัตว์ไม่ดุร้าย
                                                     2. แมวทุกตัวเป็นสัตว์เลี้ยง
                                            ผล     แมวทุกตัวเป็นสัตว์ไม่ดุร้าย อ่านต่อ
            ผลการค้นหารูปภาพสำหรับ การให้เหตุผลแบบนิรนัย

ยูเนียน

ยูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต เป็นส่วนหนึ่งของการกระทำระหว่างเซต เรานิยมเขียนออกมาในสองรูปแบบด้วยกันคือแบบสมการ และแผนภาพเวนน์-ออยเลอร์ เราลองมาดูกันครับว่ายูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต เป็นอย่างไรพร้อมตัวอย่าง

ยูเนียน (Union)

ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B อ่านต่อ

สับเซต

สับเซต
            สับเซต (subset) หรือ เซตย่อย”  คือ เซตที่เล็กกว่าหรือเท่ากันกับเซตที่กำหนด โดยต้องใช้สมาชิกร่วมกับเซตที่กำหนดเท่านั้น
ผลการค้นหารูปภาพสำหรับ สับเซต คือ            สัญลักษณ์ที่ใช้แทนประโยค “ A เป็นสับเซตของ B” คือ A Ì B และจะเกิดขึ้นได้ก็ต่อเมื่อ สมาชิกทุกตัวของเซต นั้นเป็นสมาชิกของเซต ด้วย หรือเมื่อ เป็นเซตว่างก็ได้ อ่านต่อ

เอกภพสัมพัทธ์

  เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
รูปภาพที่เกี่ยวข้อง           เอกภพสัมพัทธ์ (Relative Universe) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต  เรามักมีขอบข่ายในการพิจารณาสมาชิกของเซตที่จะกล่าวถึง  โดยมีข้อตกลงว่าเราจะไม่กล่าวถึงสิ่งใดนอกเหนือไปจากสมาชิก ของเซตที่กำหนดขึ้น เช่น ถ้าเรากำหนดเซตของสมาชิกทุกคนในครอบครัวของผู้เรียนเองให้เป็นเซตใหญ่ที่สุด  อ่านต่อ

เซต


      

ผลการค้นหารูปภาพสำหรับ เซต       เซต เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า  อ่านต่อ